
1

Handbook of Information Security Management, Auerbach Publishers, 1993, pages

481-499.

DATA AND DATABASE

SECURITY AND CONTROLS

Ravi S. Sandhu and Sushil Jajodia

Center for Secure Information Systems
&

Department of Information and Software Systems Engineering
George Mason University, Fairfax, VA 22030-4444

Telephone: 703-993-1659

1 Introduction

This chapter discusses the topic of data security and controls, primarily in the context
of Database Management Systems (DBMSs). The emphasis is on basic principles and
mechanisms, which have been successfully used by practitioners in actual products
and systems. Where appropriate, the limitations of these techniques are also noted.
Our discussion focuses on principles and general concepts. It is therefore independent
of any particular product (except for section 7 which discusses some products). In the
more detailed considerations we limit ourselves speci�cally to relational DBMSs. The
reader is assumed to be familiar with rudimentary concepts of relational databases
and SQL. A brief review of essential concepts is given in the appendix.

The chapter begins with a review of basic security concepts in section 2. This
is followed, in section 3, by a discussion of access controls in the current generation
of commercially available DBMSs. Section 4 introduces the problem of multilevel
security. It is shown that the techniques of section 3 are inadequate to solve this
problem. Additional techniques developed for multilevel security are reviewed. Sec-
tion 5, discusses the various kinds of inference threats that arise in a database system,
and discusses methods that have been developed for dealing with them. Section 6
addresses the problem of data integrity. Current practice in this area is discussed
and limitations are noted. Section 7 discusses some commercially available DBMS
products. Section 8 gives a summary of the chapter. A glossary and list of readings
follow the summary. Finally, the appendix gives a brief review of essential relational
concepts and SQL.

2 Basic Security Concepts

In this section we review some basic security concepts which are important for un-
derstanding this chapter. We also de�ne some technical terms which will be used
throughout this chapter. Whenever we use a technical term for the �rst time we will
italicize it, to draw attention to its de�nition which is given at that point.

2.1 Secrecy, Integrity and Availability

The objective of data security can be divided into three separate, but interrelated,
areas as follows.

� Secrecy is concerned with improper disclosure of information. The terms con�-
dentiality or non-disclosure are synonyms for secrecy.

� Integrity is concerned with improper modi�cation of information or processes.

� Availability is concerned with improper denial of access to information. The
term denial of service is also used as a synonym for availability.

These three objectives arise in practically every information system. For example, in
a payroll system secrecy is concerned with preventing an employee from �nding out
the boss's salary; integrity is concerned with preventing an employee from changing
his or her salary; and availability is concerned with ensuring that the paychecks are
printed on time as required by law. Similarly, in a military command and control
system secrecy is concerned with preventing the enemy from determining the target
coordinates of a missile; integrity is concerned with preventing the enemy from alter-
ing the target coordinates; and availability is concerned with ensuring that the missile
does get launched when the order is given.

Any system will have these three requirements co-existing to some degree. There
are of course di�erences regarding the relative importance of these objectives in a
given system. The commercial and military sectors both have similar needs for high
integrity systems. The secrecy and availability requirements of the military are often
more stringent than in typical commercial applications.

These three objectives also di�er with respect to our understanding of the objec-
tives themselves and of the technology to achieve them. It is easiest to understand
the objective of secrecy. Integrity is a less tangible objective on which experts in the
�eld have diverse opinions. Availability is technically the least understood aspect.
In terms of technology, the dominance of the commercial sector in the marketplace
has led vendors to emphasize mechanisms for integrity rather than for military-like
secrecy needs. The availability objective is so poorly understood that no product
today even tries to address it directly. Availability is discussed only in passing in this
chapter.

2

2.2 Security Policy

The purpose of a security policy is to elaborate the three generic security objectives of
secrecy, integrity and availability, in the context of a particular system. The generic
objectives have all used the term \improper" in their de�nition. A statement of
security policy largely consists of de�ning what is the meaning of \improper" for a
particular system.

The meaning of \improper" is sometimes mandated by law, such as for secrecy in
the classi�ed military and government sectors. Legal and professional requirements
apply to medical records and other sensitive personal information about individu-
als. Due to conict of interest considerations so-called Chinese Walls are required to
prevent business consultants from accessing con�dential information for two or more
companies competing in the same market sector. In general, however, security policy
is largely determined within an organization rather than imposed by mandate from
outside. This is particularly so in the integrity and availability arenas.

2.3 Prevention, Detection and Tolerance

The objective of data security can be approached in two distinct, and mutually sup-
portive, ways.

� Prevention. Prevention ensures that security breaches cannot occur. The basic
technique is that the system examines every action and checks its conformance
with the security policy before allowing it to occur. This technique is called
access control.

� Detection. Detection ensures that su�cient history of the activity in the system
is recorded in an audit trail, so that a security breach can be detected after the
fact. This technique is called auditing.

Every system employs some mix of these two techniques. Sometimes the distinction
between these two techniques gets blurred. For example, consider a system which
monitors the audit trail in real time looking for imminent security violations so as
to prevent them. Such a system is preventive in nature, yet the technology used is
basically a detective one. The distinction is nevertheless a useful one. Our focus in
this chapter is on preventive techniques.

Prevention is the more fundamental technique. An e�ective detection mechanism
requires a mechanism to prevent improper modi�cation of the audit trail. Moreover,
detection is ultimately useful only to the extent that it prevents improper activity by
threatening punitive action.

Finally, there is the third \technique" of tolerance in which the potential for
some security breaches is tolerated; because either these breaches are too expensive

3

to prevent or detect, or the likelihood of their occurrence is considered su�ciently
low, or security measures are acceptable to users only up to some reasonable point.
Every practical system tolerates some degree of risk with respect to potential security
breaches. It is, however, important to understand what risk is being tolerated and
what is being covered by preventive/detective mechanisms.

2.4 Assurance

Security mechanisms, whether preventive or detective in nature, can be implemented
with various degrees of assurance. Assurance is directly related to the e�ort required
to subvert the mechanism. Low assurance mechanisms are easy to implement but
also relatively easy to subvert. Subtle bugs in system and/or application software
have led to numerous security breaches. On the other hand, high assurance mecha-
nisms are notoriously di�cult to implement. They also tend to su�er from degraded
performance. Fortunately, rapid advances in hardware performance are making the
performance penalty acceptable.

3 Access Controls in Current Systems

In this section we discuss the access controls provided in the current generation of
commercially available Database Management Systems. Our focus is on relational
systems. The access controls described here are often referred to as discretionary
access controls as opposed to the mandatory access controls of multilevel security.
Discussion of this distinction is deferred until section 4.

The purpose of access controls is to ensure that a user is only permitted to perform
those operations on the database for which that user is authorized. Access controls
are based on the premise that the user has been correctly identi�ed to the system by
some authentication procedure. Authentication typically requires the user to supply
his or her claimed identity (e.g., user name, operator number, etc.) along with a
password or some other authentication token. Authentication may be performed by
the Operating System, the Database Management System, a special Authentication
Server, or some combination thereof. Authentication is not discussed any further in
this chapter. We simply assume that a suitable mechanism is in place.

3.1 Granularity and Modes of Access Control

Access controls can be imposed at various degrees of granularity in a system. Some
possibilities are enumerated below.

� The entire database.

4

� Some collection of relations.

� One relation.

� Some columns of one relation.

� Some rows of one relation.

� Some columns of some rows of one relation.

Access controls are also di�erentiated with respect to the operation to which they
apply. These distinctions are important, e.g., each employee may be authorized to
read his own salary but not to write it. In relational databases access control modes
are expressed in terms of the basic SQL operations (i.e., SELECT, UPDATE, INSERT
and DELETE) as follows.

� The ability to INSERT and DELETE is speci�ed on a relation by relation basis.

� SELECT is also usually speci�ed on a relation by relation basis. Finer granu-
larity of authorization for SELECT can be provided by views (see section 3.2.1
below).

� UPDATE can be restricted to certain columns of a relation.

In addition to these access control modes which apply to individual relations or parts
thereof, there are also privileges which confer special authority on users. A common
example is the DBA privilege for Database Administrators.

3.2 Data Dependent Access Control

Database access controls are often data dependent. For example, some users may be
limited to seeing salaries which are less than $30,000. Similarly, a manager may be
restricted to seeing salaries for employees in his department. We now discuss two basic
techniques, viz., view-based access controls and query modi�cation, for implementing
data-dependent access controls in relational databases.

3.2.1 View Based Access Control

A base relation is a \real" relation in the database, that is it is actually stored in
the Database. A view is a \virtual" relation which is derived from base relations and
other views. The database stores the view de�nitions and materializes the view as
needed.

To illustrate the concept of a view, and its security application, consider the
EMPLOYEE relation of Table 1. (The value NULL indicates that Harding has no
manager.) The following SQL statement de�nes a view called TOY-DEPT.

5

NAME DEPT SALARY MANAGER
Smith Toy 10,000 Jones
Jones Toy 15,000 Baker
Baker Admin 40,000 Harding
Adams Candy 20,000 Harding
Harding Admin 50,000 NULL

Table 1: Base Relation EMPLOYEE

NAME SALARY MANAGER
Smith 10,000 Jones
Jones 15,000 Baker

Table 2: View TOY-DEPT

CREATE VIEW TOY-DEPT
AS SELECT NAME, SALARY, MANAGER

FROM EMPLOYEE
WHERE DEPT = `Toy'

This de�nes the virtual relation shown in Table 2. A user who has read access to
TOY-DEPT is thereby limited to retrieving information about employees in the Toy
Department. To illustrate the dynamic aspect of views suppose that a new employee
Brown is inserted in base relation EMPLOYEE, as shown in Table 3. The view
TOY-DEPT will be automatically modi�ed to include Brown, as shown in Table 4.

Views can also be used to provide access to statistical information. For example,
the following view gives the average salary for each department.

CREATE VIEW AVSAL(DEPT, AVG)
AS SELECT DEPT, AVG(SALARY)

FROM EMPLOYEE
GROUP BY DEPT

For retrieval purposes users need not distinguish between views and base relations.
A view is simply another relation in the database, which happens to be automatically
modi�ed by the DBMS whenever its base relations are modi�ed. Views, therefore,
provide a very powerful mechanism for specifying data-dependent authorization for
data retrieval. There are, however, signi�cant problems if views are modi�ed by users
directly (rather than by side e�ect of modifying base relations). This is due to our
theoretical inability, in general, to translate updates on views into updates of base

6

NAME DEPT SALARY MANAGER
Smith Toy 10,000 Jones
Jones Toy 15,000 Baker
Baker Admin 40,000 Harding
Adams Candy 20,000 Harding
Harding Admin 50,000 NULL
Brown Toy 22,000 Harding

Table 3: Modi�ed Base Relation EMPLOYEE

NAME SALARY MANAGER
Smith 10,000 Jones
Jones 15,000 Baker
Brown 22,000 Harding

Table 4: Automatically Modi�ed View TOY-DEPT

relations (see section 6.3.2). This limits the usefulness of views for data-dependent
authorization of update operations.

3.2.2 Query Modi�cation

Query modi�cation is another technique for enforcing data-dependent access controls
for retrieval. (It is not supported in SQL, but is discussed here for the sake of
completeness.) In this technique, a query submitted by a user is modi�ed to include
further restrictions as determined by the user's authorization.

Suppose that the Database Administrator has granted Thomas the ability to query
the EMPLOYEE base relation for employees in the Toy Department, as follows.

GRANT SELECT
ON EMPLOYEE
TO Thomas
WHERE DEPT = `Toy'

Now suppose that Thomas executes the following query.

SELECT NAME, DEPT, SALARY, MANAGER
FROM EMPLOYEE

In the absence of access controls this query would return the entire EMPLOYEE

7

relation. Due to the above GRANT, however, the DBMS will automatically modify
this query to the following.

SELECT NAME, DEPT, SALARY, MANAGER
FROM EMPLOYEE
WHERE DEPT = `Toy'

This will limit Thomas to retrieving that portion of the EMPLOYEE relation for
which he was granted SELECT access.

3.3 Granting and Revocation of Access

Granting and revocation allow users to selectively and dynamically grant privileges
to other users, and subsequently revoke them if so desired. In SQL granting is accom-
plished by means of the GRANT statement which has the following general format.

GRANT privileges
[ON relation]
TO users
[WITH GRANT OPTION]

The GRANT command applies to base relations as well as views. The brackets on
the ON and WITH clauses denote that these are optional and may not be present in
every GRANT command.

Some examples of GRANT statements are given below.

� GRANT SELECT ON EMPLOYEE TO TOM

Allows Tom to execute SELECT queries on the EMPLOYEE relation.

� GRANT SELECT, UPDATE(SALARY) ON EMPLOYEE TO TOM

As above, and in addition allows Tom to modify the SALARY of existing em-
ployees in the EMPLOYEE relation.

� GRANT INSERT, DELETE ON EMPLOYEE TO TOM, DICK, HARRY

Allows Tom, Dick and Harry to insert new rows (i.e, new employees) in the
EMPLOYEE relation, and to delete existing rows (i.e., existing employees)
from the EMPLOYEE relation.

� GRANT SELECT ON EMPLOYEE TO TOM WITH GRANT OPTION

Allows Tom to execute SELECT queries on EMPLOYEE relation, and further
allows him to GRANT this privilege to other users (with or without the GRANT
OPTION).

8

� GRANT DBA TO JILL WITH GRANT OPTION

This gives the DBA privilege to Jill. This allows Jill to act as the Database
Administrator and confers a large number of privileges on her. No speci�c
relation is mentioned because the DBA privilege confers system-wide authority.
In this case, Jill can in turn GRANT this privilege to other users (with or
without the GRANT OPTION).

Note that it is not possible to grant a user the grant option on a privilege, without
allowing the grant option itself to be further granted.

Revocation in SQL is accomplished by means of the REVOKE statement which
has the following general format.

REVOKE privileges
[ON relation]
FROM users

Some examples of REVOKE statements are given below. The meaning of REVOKE
depends upon who executes it. The examples are therefore given as a sequence of
actions. Each step identi�es the user who executes it.

� DICK: GRANT SELECT ON EMPLOYEE TO TOM
DICK: REVOKE SELECT ON EMPLOYEE FROM TOM

Dick grants a privilege to Tom and then revokes it.

� DICK: GRANT SELECT ON EMPLOYEE TO TOM
HARRY: GRANT SELECT ON EMPLOYEE TO TOM
DICK: REVOKE SELECT ON EMPLOYEE FROM TOM

Dick revokes his grant of the SELECT privilege to Tom. However, Tom contin-
ues to retain the SELECT privilege due to the grant by Harry.

� DICK: GRANT SELECT ON EMPLOYEE TO JOE WITH GRANT OPTION
JOE: GRANT SELECT ON EMPLOYEE TO TOM
DICK: REVOKE SELECT ON EMPLOYEE FROM JOE

This revokes Dick's grant of the SELECT privilege to Joe, and also indirectly
revokes Joe's grant of the SELECT privilege to Tom. This is called cascading

revocation.

� DICK: GRANT SELECT ON EMPLOYEE TO JOE WITH GRANT OPTION
HARRY: GRANT SELECT ON EMPLOYEE TO JOE WITH GRANT OP-
TION
JOE: GRANT SELECT ON EMPLOYEE TO TOM
DICK: REVOKE SELECT ON EMPLOYEE FROM JOE

This revokes Dick's grant. However, Joe and Tom continue to retain the SE-
LECT privilege due to the grant by Harry.

9

� DICK: GRANT SELECT ON EMPLOYEE TO JOE WITH GRANT OPTION
JOE: GRANT SELECT ON EMPLOYEE TO TOM
HARRY: GRANT SELECT ON EMPLOYEE TO JOE WITH GRANT OP-
TION
DICK: REVOKE SELECT ON EMPLOYEE FROM JOE

This revokes Dick's grant. Since Joe has received a later grant from Harry, Joe
continues to hold the SELECT privilege (with grant option). The SELECT
privilege from Tom is, however, revoked. This is because the grant from Joe to
Tom occurred before Harry's grant to Joe.

� DICK: GRANT UPDATE(SALARY,DEPT) ON EMPLOYEE TO JOE
DICK: REVOKE UPDATE ON EMPLOYEE FROM JOE

This revokes Joe's UPDATE privilege on both columns SALARY and DEPT.
It is not possible to revoke UPDATE for only one of these columns.

4 Multilevel Security Requirements

In this section we introduce the problem of multilevel security. The focus of multilevel
security is on secrecy, and this section reects this focus.

The access controls of section 3 are said to be discretionary, because the granting
of access is under user control. Users who possess a privilege with the grant option
are free to grant it to whomever they choose to. We �rst show that this approach
has serious limitations with respect to secrecy requirements. We then describe how
mandatory access controls get around this limitation. Next we introduce the covert
channel problem which even mandatory controls are unable to solve. Finally, we
briey discuss the evaluation criteria for secure computer systems developed by the
U.S. Department of Defense. It should be noted that although multilevel security has
been developed primarily for the military sector, it is applicable in the commercial
sector also.

4.1 Limitations of Discretionary Access Controls

To illustrate the basic limitation of discretionary access controls, consider the follow-
ing grant operation.

TOM: GRANT SELECT ON EMPLOYEE TO DICK

Tom has not conferred the grant option on Dick. Tom's intention is that Dick should
not be allowed to further grant SELECT access on EMPLOYEE to other users.
However, this intent is easily subverted as follows. Dick creates a new relation, call it
COPY-OF-EMPLOYEE, into which he copies all the rows of EMPLOYEE. As the

10

creator of COPY-OF-EMPLOYEE, Dick has the authority to grant any privileges for
it to any user. Dick can therefore grant Harry access to COPY-OF-EMPLOYEE as
follows.

DICK: GRANT SELECT ON COPY-OF-EMPLOYEE TO HARRY

At this point Harry has access to all the information in the original EMPLOYEE
relation. For all practical purposes Harry has SELECT access to EMPLOYEE, so
long as Dick keeps COPY-OF-EMPLOYEE reasonably up to date with respect to
EMPLOYEE.

The situation is actually worse than the above scenario indicates. So far, we have
portrayed Dick as a cooperative participant in this process. Now suppose that Dick
is a trusted con�dant of Tom and would not deliberately subvert Tom's intentions
regarding the EMPLOYEE relation. However, Dick uses a fancy text editor supplied
to him by Harry. This editor provides all the editing services that Dick needs. In
addition Harry has also programmed it to create the COPY-OF-EMPLOYEE relation
and execute the above grant operation. Such software is said to be a Trojan Horse,
because in addition to the normal functions expected by its user it also engages in
surreptitious actions to subvert security. Note that a Trojan Horse executed by Tom
could actually grant Harry the privilege to SELECT on EMPLOYEE.

In summary, even if the users are trusted not to deliberately breach security we
have to contend with Trojan Horses which have been programmed to deliberately do
so. We can require that all software that is run on the system is free of Trojan Horses.
But this is hardly a practical option. The solution is to impose mandatory controls
which cannot be violated, even by Trojan Horses.

4.2 Mandatory Access Controls

Mandatory access controls are based on security labels associated with each data item
and each user. A label on a data item is called a security classi�cation, while a label
on a user is called a security clearance. In a computer system every program run
by a user inherits the user's security clearance. In other words the user's clearance
applies not only to the user as a human being, but also to every program executed
by that user. It is important to understand that a particular program, such as a text
editor, when executed by a Secret user is run as a Secret process; whereas when it is
executed by an Unclassi�ed user it is run as an Unclassi�ed process. Moreover, the
classi�cations and clearances once assigned cannot be changed (except by the security
o�cer).

Security labels in the military and government sectors consist of two components:
a hierarchical component and a (possibly empty) set of categories. The hierarchical
component consists of the following, listed in decreasing order of sensitivity.

11

� Top secret (TS)

� Secret (S)

� Con�dential (C)

� Unclassi�ed (U)

The categories consist of items such as NUCLEAR, CONVENTIONAL, NAVY,
ARMY, NATO, etc.

The label X is said to dominate label Y provided the hierarchical component of
X is greater than or equal to the hierarchical component of Y, and the categories of
X contain all the categories of Y. For example:

� X= (TOP-SECRET, fNUCLEAR, ARMYg) dominates Y = (SECRET, fARMYg)

� X= (SECRET, fNUCLEAR, ARMYg) dominates Y = (SECRET, fNUCLEARg)

� X= (TOP-SECRET, fNUCLEARg) is incomparable to Y = (SECRET, fARMYg),
i.e., neither one dominates the other.

Note that two labels which dominate each other are exactly identical.

Commercial organizations also use similar labels for protecting sensitive informa-
tion. The main di�erence is that procedures for assigning clearances to users are
much less formal than in the military or government sectors.

We will henceforth limit ourselves to hierarchical labels, i.e., labels without any
categories. The reader is cautioned that there are many subtle issues which arise
due to incomparable labels (i.e., labels with categories). However, the basic concepts
can be demonstrated with hierarchical labels. We usually use the labels Secret and
Unclassi�ed in our discussion.

When a user signs on (i.e., logs in) to the system he or she speci�es the secu-
rity level of that session. The level of the session must be dominated by the user's
clearance. That is, a Secret user can sign on as Unclassi�ed, but an Unclassi�ed user
cannot sign on as Secret. Once the user is signed on at a speci�c level all programs
executed by him or her will be run at that level.

The following rules for mandatory access control were formulated by Bell and
LaPadula.

� Simple Security: A subject (i.e., a running program) with label X can read an
object (i.e., a data item) with label Y only if X dominates Y.

� Star-Property: A subject with label X can write an object with label Y only if
Y dominates X.

12

For example, a Secret subject can read Secret and Unclassi�ed data, but cannot write
Unclassi�ed data. So even with Trojan Horses in the software, it is not possible to
copy information from Secret data items to Unclassi�ed data items.

The simple-security requirement applies equally to humans and programs. The
star-property on the other hand is not applied to the human users, but rather to
programs. Human users are trusted not to leak information. A Secret user can
write an Unclassi�ed document, because it is assumed that he or she will only put
Unclassi�ed information in it. Programs, on the other hand, are not trusted because
they may have Trojan Horses embedded in them (recall the Trojan Horse example in
section 4.1). A program running at the Secret level is therefore not allowed to write
to Unclassi�ed data items.

4.3 Covert Channels

Unfortunately, mandatory controls do not solve the Trojan Horse problem completely.
A program running at the Secret level is prevented from writing directly to Unclas-
si�ed data item. There are, however, other ways of communicating information to
Unclassi�ed programs.

For example, the Secret program can acquire large amounts of memory in the
system. This fact can be detected by an Unclassi�ed program which is able to observe
how much memory is available. Even if the Unclassi�ed program is prevented from
directly observing the amount of free memory, it can do so indirectly by making a
request for a large amount of memory itself. Granting or denial of this request will
convey some information about free memory to the Unclassi�ed program.

Such indirect methods of communication are called covert channels. Covert chan-
nels present a formidable problem for multilevel security. They are di�cult to detect,
and once detected are di�cult to close without incurring signi�cant performance
penalties. Covert channels do tend to be noisy due to interference by the activity of
other users in the system. Nevertheless, standard coding techniques for communica-
tion on noisy channels can be employed by the Trojan Horses to achieve error-free
communication, with data rates which can be as high as several million bits per
second.

4.4 Evaluation Criteria

In 1985 the U.S. Department of Defense published the Trusted Computer System

Evaluation Criteria, popularly known as the Orange Book. This document established
a metric against which computers systems can be evaluated for security. The metric
consists of a number of levels, A1, B3, B2, B1, C2, C1, and D; listed here in decreasing
order of how secure the system is.

For each level, the Orange Book lists a set of requirements that a system must

13

have to achieve that level of security. Briey, the D level consists of all systems which
are not secure enough to qualify for any of A, B, or C levels. Systems at levels C1 and
C2 provide discretionary protection of data, systems at level B1 provide mandatory
access controls, and systems at levels B2 or above provide increasing assurance, in
particular against covert channels. The level A1, which is most rigorous, requires
veri�ed protection of data.

In 1991 the U.S. Department of Defense published the Trusted Database Inter-

pretation of the Trusted Computer System Evaluation Criteria, popularly known as
the TDI. The TDI describes how a DBMS and the underlying OS can be evaluated
separately and in conjunction. Several e�orts are underway to build secure DBMS
products satisfying these criteria.

5 Inference and Aggregation

Even in multilevel secure DBMSs, it is possible for users to draw inferences from the
information they obtain from the database. The inference could be derived purely
from the data obtained from the database system, or it could additionally depend on
some prior knowledge which was obtained by users from outside the database system.
An inference presents a security breach if more highly classi�ed information can be
inferred from less classi�ed information.

There is a signi�cant di�erence between the inference and covert channel problems.
Inference is a unilateral activity, in which an Unclassi�ed user legitimately accesses
Unclassi�ed information from which that user is able to deduce Secret information.
Covert channels, on the other hand, require cooperation of a Secret Trojan Horse
which transmits information to an Unclassi�ed user by indirect means of communi-
cation. The inference problem will exist even in an ideal system which is completely
free of covert channels.

There are many di�culties associated with determining when more highly classi-
�ed information can be inferred from less classi�ed information. The biggest problem
is that it is impossible to determine precisely what a user knows. The inference prob-
lem is somewhat manageable if we adopt the closed-world assumption and assume
that if information Y can be derived using information X, then both X and Y are
contained in the database. In reality, however, the outside knowledge that users bring
plays a signi�cant role in inference.

There are two important cases of the inference problem, which often arise in
database systems.

� An aggregation problem occurs whenever there is a collection of data items
that is classi�ed at a higher level than the levels of individual data items by
themselves. A classic example from a military context occurs when the location
of individual ships is unclassi�ed, but the aggregate information concerning the

14

location of all ships in the eet is secret. Similarly, in the commercial sector
the individual sales �gures for branch o�ces might be considered less sensitive
than the aggregate sales �gures for the entire company.

� A data association problem occurs whenever two values seen together are clas-
si�ed at a higher level than the classi�cation of either value individually. As an
example, the list consisting of the names of all employees and the list contain-
ing all employee salaries are unclassi�ed, while a combined list giving employee
names with their salaries is classi�ed.

Notice that the data association problem is di�erent from the aggregation problem
since what is really sensitive is not the aggregate of the two lists, but the exact
association giving an employee name and his or her salary.

We now describe some techniques for resolving the inference problem. Although
these methods can be extremely useful, a complete and generally applicable solution
to the inference problem remains an elusive goal.

5.1 Appropriate Labeling

If Unclassi�ed information x permits disclosure of Secret information y, one way to
prevent this is to reclassify all or part of information x such that it is no longer
possible to derive y from the disclosed subset of x. To illustrate, suppose that an
attribute A is Unclassi�ed while attribute B is Secret. Suppose the database enforces
the constraint A + B � 20, and that the constraint is known to Unclassi�ed users.
The value of B does not a�ect the value of A directly, but it does constrain the set of
possible values A can take. Thus we have an inference problem. This inference can
be prevented by reclassifying A as Secret.

5.2 Query Restriction

Many inference violations arise as a result of a query which returns data at the user's
level, but its evaluation requires accessing data above the user's level. As an ex-
ample, suppose that data are classi�ed at the relation level, and that we have two
relations, an Unclassi�ed relation, called EP, with attributes EMPLOYEE-NAME
and PROJECT-NAME, and a Secret relation, called PT, with attributes PROJECT-
NAME and PROJECT-TYPE. Let EMPLOYEE-NAME be the key of the �rst re-
lation and PROJECT-NAME the key of the second. (The existence of the relation
scheme PT is Unclassi�ed.)

Suppose an Unclassi�ed user makes the following SQL query.

15

SELECT EP.PROJECT-NAME
FROM EP, PT
WHERE EP.PROJECT-NAME = PT.PROJECT-NAME AND

EP.PROJECT-TYPE = `NUCLEAR'

The data returned by this query, viz., project names, is extracted from the Unclassi�ed
relation EP. As such the output of this query contains Unclassi�ed data. Nevertheless
it reveals Secret information, viz., names of nuclear projects, which is stored in the
Secret relation PT. The point of this example is that even though the output of this
query is wholly contained in the Unclassi�ed relation EP, it reveals Secret information
by virtue of being selected based on Secret data in the PT relation.

Query restriction ensures that all data used in the process of evaluating the query
is dominated by the level of the user, and therefore prevents such inferences. To this
end, the system can either modify the user query such that the query involves only
the authorized data or simply abort the query.

5.3 Polyinstantiation

Polyinstantiation is another technique that can be used to prevent inference violations.
To illustrate, suppose an Unclassi�ed user wants to enter a row in a relation in which
each row is labeled as S (Secret) or U (Unclassi�ed). If the same key is already
occurring in an S row, we cannot prevent the Unclassi�ed from inserting the U row
without leakage of 1 bit of information by inference. In other words the classi�cation
of the row has to be treated as part of the relation key. Thus U rows and S rows will
always have di�erent keys, since the keys will have di�erent security classes.

An example is given in the SD relation of Table 5, which has the key STARSHIP,
CLASS. Suppose a Secret user inserts the �rst row in this relation. Later, an Un-
classi�ed user inserts the second row. This later insertion cannot be rejected without
leaking the fact to the Unclassi�ed user that a Secret row for the Enterprise already
exists. The insertion is therefore allowed resulting in the relation of Table 5. Unclas-
si�ed users see only one row for the Enterprise, viz., the U row. Secret users see two
rows. There are two di�erent ways these two rows might be interpreted as follows.

� There are two distinct starships named Enterprise going to two distinct desti-
nations. Unclassi�ed users know of the existence of only one of them, viz., the
one going to Mars. Secret users know about both of them.

� There is a single starship named Enterprise. Its real destination is Rigel, which
is known to Secret users. There is an Unclassi�ed cover story alleging that the
destination is Mars.

Presumably, Secret users know which interpretation is intended.

16

STARSHIP DESTINATION CLASS
Enterprise Rigel S
Enterprise Mars U

Table 5: Relation SD

5.4 Auditing

Auditing can be used to control inferences. For instance, a history can be kept of all
queries made by a user. Whenever the user makes a query, the history is analyzed to
determine whether the response to this query, correlated with the responses to earlier
queries, could result in an inference violation. If a violation could arise, the systems
can take appropriate action (for example, abort the query).

There is a side bene�t of this approach: it may deter many inference attacks
by threatening discovery of violations. There are two disadvantages of this approach:
One, it may be too cumbersome to be useful in practical situation. Two, it can detect
very limited types of inferences (since it is based on the hypothesis that a violation
can always be detected by analyzing the audit records for abnormal behavior.)

5.5 Tolerating Limited Inferences

Tolerance methods are useful in those cases in which the inference bandwidth is so
small that these violations do not pose any threat. Consider the following example.
Suppose that data are classi�ed at the column level, and that we have two relations,
one called PD with the Unclassi�ed attribute PLANE and Secret attribute DES-
TINATION, and another called DF with the Unclassi�ed attribute DESTINATION
and Unclassi�ed attribute FUEL-NEEDED. Suppose also that, although knowledge
of the fuel needed for a particular plane can give information about the destination
of the plane, there are too many destinations requiring the same amount of fuel for
this to be a serious inference threat. Moreover, we do not want to go to the trouble of
clearing everybody responsible for fueling the plane to the Secret level. Thus we wish
to make the derived relation with attributes PLANE and FUEL-NEEDED available
to Unclassi�ed users.

Even though we have decided that this information does not provide a serious in-
ference threat, we cannot allow Unclassi�ed users to extract the required information
from PD and PF by, say, executing the following query.

SELECT PLANE, FUEL-NEEDED
FROM PD, DF
WHERE PD.DESTINATION = DF.DESTINATION

17

Doing so opens up a covert channel for leaking Secret information to Unclassi�ed
users.

One solution is to use the snapshot approach, where a trusted user creates a derived
Secret relation with attributes PLANE and FUEL-NEEDED and then downgrades it
to Unclassi�ed. Although this \snapshot" cannot be updated automatically without
opening a covert channel, it can be kept more or less up-to-date by having the trusted
user re-create it from time to time.

A \snapshot" or a \sanitized �le" is an important technique for controlling in-
ferences, especially in o�ine, static databases. In particular, it has been used quite
e�ectively by the United States Bureau of the Census.

6 Integrity Principles and Mechanisms

In this section we discuss the problem of data integrity. Integrity is a much less tan-
gible objective than secrecy. Our approach to integrity is pragmatic and utilitarian.
We de�ne integrity as being concerned with the improper modi�cation of informa-
tion (much as con�dentiality is concerned with improper disclosure). We understand
modi�cation to include insertion of new information, deletion of existing information
as well as changes to existing information.

The reader may have seen similar de�nitions of integrity using \unauthorized"
instead of \improper." Our use of the latter term is signi�cant and should not be dis-
missed lightly. Integrity breaches can and do occur without authorization violations.
In other words authorization is only one piece of the solution and we must also deal
with the malicious user who exercises his or her authority improperly.

6.1 The Insider Threat

It is important to understand that the threat posed by a corrupt authorized user is
quite di�erent in the context of integrity as compared to secrecy.

A corrupt user can leak secrets by (i) using the computer to legitimately access
con�dential information, and then (ii) passing on this information to an improper
destination by some non-computer means of communication (e.g., a telephone call).
It is simply impossible for the computer to know whether or not step (i) was followed
by step (ii). We therefore have no choice but to trust our insiders to be honest and
alert. The military and government sectors have established elaborate procedures
for this purpose, while the commercial sector is much more informal in this respect.
Security research which focuses on secrecy therefore considers the principal threat to
be Trojan Horses embedded in programs. That is, the focus is on corrupt programs
rather than corrupt users.

Analogously, a corrupt user can compromise integrity by (i) manipulating stored

18

data, or (ii) falsifying source or output documents. A computer system can do little
by itself to solve the problem of false source or output documents, for which we
must rely on the traditional techniques of paper-based manual systems. However, the
manipulation of stored data simply cannot be done without use of the computer. In
principle, the computer system is in a position to detect or prevent such manipulation.
Integrity must therefore focus on the corrupt user as the principal problem. In fact
the Trojan Horse problem can itself be viewed as a problem of corrupt system or
application programmers, who improperly modify the software under their control.
Also note that the problem of the corrupt user remains even if we are willing to trust
all our software to be free of Trojan Horses.

6.2 Integrity Principles

In this section we identify basic principles for achieving data integrity. Principles
lay down broad goals without specifying how to achieve them. In section 6.3 we will
map these principles to DBMS mechanisms. Principles lay out what needs to be done
while mechanisms establish how these principles are to be achieved.

Seven integrity principles are enumerated below.

1. Well-formed Transactions. The concept of the well-formed transaction is that
users should not manipulate data arbitrarily, but only in restricted ways that
preserve integrity of the database.

2. Least Privilege. Programs and users should be given the least privilege necessary
to accomplish their task.

3. Separation of Duties. Separation of duties is a time honored principle for pre-
vention of fraud and errors, going back to the very beginning of commerce.
Simply stated, no single individual should be in a position to misappropriate
assets on his own. Operationally this means that a chain of events which a�ects
the balance of assets must require di�erent individuals to be involved at key
points, so that without their collusion the overall chain cannot take e�ect.

4. Reconstruction of Events. This principle seeks to deter improper behavior by
threatening its discovery. The ability to reconstruct what happened in a system
stems from the notion of accountability. Users are accountable for their actions
to the extent that it is possible to determine what they did.

5. Delegation of Authority. This principle concerns the critical issue of how priv-
ileges are acquired and distributed in an organization. Clearly the procedures
to do so must reect the structure of the organization and allow for e�ective
delegation of authority.

19

6. Reality Checks. Cross-checks with external reality are an essential part of in-
tegrity control. For example, if an internal inventory record does not correctly
reect the number of items in the warehouse, it makes little di�erence if the
value of the recorded inventory is being correctly recorded in the balance sheet.

7. Continuity of Operation. This principle states that system operations should
be maintained to some appropriate degree in the face of potentially devastating
events which are beyond the organization's control. This catch-all description
is intended to include natural disasters, power outages, disk crashes and the
like. With this principle we are clearly stepping into the scope of availability.
We have mentioned it here for the sake of completeness.

6.3 Integrity Mechanisms

We now consider DBMS mechanisms to facilitate application of the principles de�ned
in the previous section.

6.3.1 Well-formed Transactions

The concept of a well-formed transaction corresponds very well to the standard DBMS
concept of a transaction. A transaction is de�ned as a sequence of primitive actions
which satis�es the following properties.

� Correct state transform: each transaction if run by itself in isolation and given
a consistent state to begin with will leave the database in a consistent state.

� Serializability: the net e�ect of executing a set of transactions is equivalent to
executing them in some sequential order, even though they may actually be
executed concurrently (i.e., their actions are interleaved or simultaneous).

� Failure atomicity: either all or none of the updates of a transaction take e�ect.
(We understand update to mean modi�cation, i.e., it includes insertion of new
data, deletion of existing data and changes to existing data.)

� Progress: every transaction will eventually complete, i.e., there is no inde�nite
blocking due to deadlock and no inde�nite restarts due to livelocks.

The basic requirement is that the DBMS must ensure that updates are restricted
to transactions. Clearly, if users are allowed to bypass transactions and directly
manipulate relations in a database, we have no foundation to build upon. In other
words updates should be encapsulated within transactions. This restriction may
seem too strong, because in practice there will always be a need to perform ad hoc
updates. However, ad hoc updates can themselves be carried out by means of special

20

transactions! Of course the authorization for these special ad hoc transactions should
be carefully controlled and their usage properly audited.

DBMS mechanisms can help in assuring the correctness of a state by enforcing
consistency constraints on the data. Consistency constraints are also often called
integrity constraints or integrity rules in the database literature. Since we are using
integrity in a wider sense we prefer the former term.

The relational data model in particular imposes two consistency constraints.

� Entity integrity stipulates that attributes in the primary key of a relation cannot
have NULL values. This amounts to requiring that each entity represented in
the database must be uniquely identi�able.

� Referential integrity is concerned with references from one entity to another. A
foreign key is a set of attributes in one relation whose values are required to
match those of the primary key of some speci�c relation. Referential integrity
requires that a foreign key either be all NULL or a matching tuple exist in the
latter relation. This amounts to ruling out dangling references to non-existent
entities.

Entity integrity is easily enforced. Referential integrity on the other hand requires
more e�ort and has seen limited support in commercial products. The precise manner
in which to achieve it is also very dependent on the semantics of the application. This
is particularly so when the referenced tuple is deleted. There are several choices as
follows: (i) prohibit this delete operation, (ii) delete the referencing tuple (with a
possibility of further cascading deletes), or (iii) set the foreign key attributes in the
referencing tuple to NULL.

The relational model in addition encourages the use of domain constraints whereby
the values in a particular attribute (column) are constrained to come from some given
set. These constraints are particularly easy to state and enforce, at least so long as
the domains are de�ned in terms of primitive types such as integers, decimal numbers
and character strings. A variety of dependency constraints which constrain the tuples
in a given relation have been extensively studied in the database literature.

In the limit a consistency constraint can be viewed as an arbitrary predicate
which all correct states of the database must satisfy. The predicate may involve any
number of relations. Although this concept is theoretically appealing and exible
in its expressive power, in practice the overhead in checking the predicates for every
transaction has been prohibitive. As a result relational DBMS's typically con�ne their
enforcement of consistency constraints to domain constraints and entity integrity.

6.3.2 Least Privilege

The principle of least privilege translates into a requirement for �ne-grained access
control. For purpose of controlling read access DBMSs have employed mechanisms

21

EMP DEPT
Smith Toy
Jones Toy
Adams Candy

DEPT MANAGER
Toy Brown
Candy Baker

Table 6: Base Relations EMP-DEPT and DEPT-MANAGER

EMP MANAGER
Smith Brown
Jones Brown
Adams Baker

Table 7: View EMPLOYEE-MANAGER

EMP MANAGER
Smith Green
Jones Brown
Adams Baker

Table 8: Updated View EMPLOYEE-MANAGER

based on views or query modi�cation. These mechanisms are extremely exible and
can be as �ne grained as desired. However, neither one of these mechanisms provides
the same exibility for �ne-grained control of updates. The fundamental reason for
this is our theoretical inability to translate updates on views into updates of base
relations, in general. As a result authorization to control updates is often less sophis-
ticated than authorization for read access.

To appreciate the di�culty in updating views, consider the two base relations
shown in table 6, and the view shown in table 7. This view is created from the base
relations as follows.

CREATE VIEW EMP-MANAGER
AS SELECT EMP, MANAGER

FROM EMP-DEPT, DEPT-MANAGER
WHERE EMP-DEPT.DEPT = DEPT-MANAGER.DEPT

Consider the following UPDATE statement.

UPDATE EMP-MANAGER
SET MANAGER = `Green'
WHERE EMP = `Smith'

22

If EMP-MANAGER was a base relation, this update would have the e�ect shown in
table 8. This e�ect, however, cannot be attained by updating existing tuples in the
base relations of table 6. Suppose we change the manager of the Toy department as
follows.

UPDATE DEPT-MANAGER
SET MANAGER = `Green'
WHERE DEPT = `Toy'

We will obtain the following view

EMP MANAGER
Smith Green
Jones Green
Adams Baker

where the manager of Jones has also been changed to Green. The view of table 8 can
be realized by modifying the base relations of table 6 as follows.

EMP DEPT
Smith X
Jones Toy
Adams Candy

DEPT MANAGER
X Green
Toy Brown
Candy Baker

In this case Smith is assigned to some department, say X, whose manager is Green. It
is, however, di�cult to justify that this is the intended result of the original UPDATE
on the view EMP-MANAGER. Moreover, the UPDATE statement gives us no clue
as to what X might be.

For these reasons �ne-grained control of updates by means of views does not
work well in practice. View are, however, extremely useful for �ne-grained control of
retrieval.

6.3.3 Separation of Duties

Separation of duties �nds little support in existing products. Although it is possible to
use existing mechanisms for this purpose, these mechanisms have not been designed
with this end in mind. As a result their use is awkward at best. Separation of
duties is inherently concerned with sequences of transactions, rather than individual
transactions in isolation. For example consider a situation in which payment in the
form of a check is prepared and issued by the following sequence of events.

1. A clerk prepares a voucher and assigns an account.

2. The voucher and account are approved by a supervisor.

23

3. The check is issued by a clerk who must be di�erent from the clerk in step 1.
Issuing the check also debits the assigned account. (Strictly speaking we should
debit one account and credit another in equal amounts. The important point
for our purpose is that issuing a check modi�es account balances.)

This sequence embodies separation of duties since the three steps must be executed
by di�erent people. The policy moreover has a dynamic avor in that a particular
clerk can prepare vouchers as well as, on di�erent occasions, issue checks. However,
a clerk cannot issue a check for a voucher prepared by himself.

6.3.4 Reconstruction of Events

The ability to reconstruct events in a system serves as a deterrent to improper be-
havior. In the DBMS context the mechanism to record the history of a system is
traditionally called an audit trail. As with the principle of least privilege, a high-end
DBMS should be capable of reconstructing events to the �nest detail. In practise this
ability must be tempered with the reality that gathering audit data indiscriminately
can generate overwhelming volume. Therefore a DBMS must also allow �ne-grained
selectivity regarding what is audited. It should also structure the audit trail logically
so that it is easy to query. For instance, logging every keystroke does give us the
ability to reconstruct the system history accurately. However, with this primitive
logical structure one needs substantial e�ort to reconstruct a particular transaction.
In addition to the actual recording of all events that take place in the database, an
audit trail must also provide support for true auditing, i.e., an audit trail must have
the capability for an auditor to examine it in a systematic manner. In this respect
DBMSs have a signi�cant advantage, since their powerful querying abilities can be
used for this purpose.

6.3.5 Delegation of Authority

The need to delegate authority and responsibility within an organization is essential
to its smooth functioning. It appears in its most developed form with respect to
monetary budgets. However the concept applies equally well to the control of other
assets and resources of the organization.

In most organizations the ability to grant authorization is never completely un-
constrained. For example, a department manger may be able to delegate substantial
authority over departmental resources to project managers within his department and
yet be prohibited to delegate this authority to project managers outside the depart-
ment. Traditional delegation mechanisms based on the concept of ownership, e.g., as
embodied in the SQL GRANT and REVOKE statements, are not adequate in this
context. Further work remains to be done in this area.

24

6.3.6 Reality Checks

This principle inherently requires activity outside of the DBMS. The DBMS does have
obligation to provide an internally consistent view of that portion of the database
which is being externally veri�ed. This is particularly so if the external inspection is
conducted on an ad hoc on-demand basis.

6.3.7 Continuity of Operation

The basic technique to deal for maintaining continuity of operation in the face of
natural disasters, hardware failures and other disruptive events, is redundancy in
various forms. Recovery mechanisms in DBMS's must also ensure that we arrive at
a consistent state.

6.4 Conclusion

The integrity principles, identi�ed in section 6.3 can be divided into two groups as
follows, on the basis of how well existing DBMS mechanisms can support them.

Group I Group II
Well-formed transactions Least privilege
Continuity of operation Separation of duties
Reality checks Reconstruction of events

Delegation of authority

Group I principles are adequately supported in existing products (to the extent that
a DBMS can address these issues), whereas Group II principles are not so well un-
derstood and require improvement.

7 Examples

In this section we briey review some representative commercial DBMS products,
viz., DB2, Oracle, and dBase IV. Our objective is to illustrate how the general prin-
ciples and concepts discussed in the previous sections have been applied in actual
products. The products described here are complex and large pieces of software. The
descriptions given below should be taken as high-level bird's eye perspectives of some
salient features.

The examples in this section are limited to conventional DBMSs, with security
features based on discretionary access controls. There are a number of development
e�orts to build DBMSs which incorporate the mandatory controls discussed in sec-
tion 4. Most major DBMS vendors, with the notable exception of IBM, have formally

25

announced some e�ort in this area. These include familiar names such as Informix,
Ingres, Oracle, Sybase, Teradata, and DEC. Lesser known names include Atlantic
Research Corporation (TRUDATA) and InfoSystems Technology Inc (Rubix).

7.1 DB2

DB2, or Database 2, is IBM's relational DBMS for the MVS (Multiple Virtual Stor-
ages) operating system. It provides a dialect of SQL and QBE (Query by Example)
as its query languages. Users of DB2 �rst sign on to one of the following MVS subsys-
tems: IMS (Information Management System), CICS (Customer Information Control
System), or TSO (Time Sharing Option). DB2 identi�es a user by means of a sys-
tem administrator assigned authorization identi�er (ID). DB2 relies on the individual
MVS subsystems to authenticate the authorization ID.

The DB2 system catalog contains the metadata (i.e., data about data) of the
system, including de�nitions of base tables, views, authorization IDs, access privileges,
etc. The system catalog is itself stored as tables. Two important tables in the system
catalog are SYSTABLES and SYSCOLUMNS. SYSTABLES contains an entry for
each base table in the system specifying its name, creator, and number of columns
among other things. SYSCOLUMNS contains an entry for each column giving its
name, the name of the table to which it belongs and its domain.

Access to the databases as well as the system catalog can be controlled by views.
The system keyword USER refers to the current user's authorization ID. The keyword
PUBLIC refers to all authorization IDs. Keywords such as USER and PUBLIC can
be used in view de�nitions and associated GRANTs. DB2 avoids the view update
problem by restricting view updates to a subset of single-relation views.

There is one authorization ID which has the SYSADM (for system administrator)
privilege. SYSADM is the highest privilege and includes all other privileges in the
system. DBADM is another comprehensive privilege which confers the ability to
execute any operation on a particular database.

The use of DB2's authorization and security mechanisms is optional; that is,
they may be disabled if so desired. On the other hand, the controls of DB2 can be
supplemented by those of MVS, IMS, CICS and TSO to provide additional protection.

7.2 ORACLE

The Oracle DBMS is a product of Oracle Corporation. It is available on a wide range
of operating systems, including IBM's MVS, DEC's VMS, various avors of Unix,
MS-DOS etc. Reecting this diversity, it comes in various modes such as multi-user,
single-user, networked and distributed. Oracle supports its own dialect of SQL.

Each Oracle database has a collection of user accounts, each with a user name

26

and password. Oracle de�nes three types basic privileges called Connect, Resource
and DBA (Data Base Administrator). Users with the Connect privilege can log on
to the database, and access and update those tables to which they have been granted
appropriate access permissions. They cannot create tables, but they may create views.
The Resource privilege allows users to create their own tables, for which access may
be granted to other users. Users with the DBA privilege essentially have all privileges,
including the ability to access and update any other user's tables. In particular, all
user accounts are created and owned by DBA accounts.

An Oracle system is initially installed with three special accounts called Sys,
System and Public. Sys and System both have DBA privileges. Together they own
the tables and views comprising the Oracle data dictionary (which is analogous to the
DB2 system catalog). All privileges granted by a user to the special user Public are
automatically granted to all user accounts. Much like DB2, Oracle avoids the view
update problem by restricting view updates to a subset of single-relation views.

7.3 dBase IV

dBase IV is a popular microcomputer DBMS. The dBase series of products provides
a set of standard dBase commands, as a query language for de�ning, storing and
manipulating data. In addition, dBase IV also provides an SQL interface. It is
possible to con�gure dBase IV to control access on the basis of what can be done
to an individual table, in terms of reading, changing, adding and deleting rows. It
is also possible to control access on a column by column basis allowing read-write
access, read-only access, or no access. This is usually done in a network environment.
User accessing dBase IV over the network are asked to �rst log in. The valid users
and their permissions are speci�ed by the system administrator. Note that dBase IV
controls access only to the base tables and not to views.

8 Summary

The problem of data security has three aspects: secrecy, integrity and availability.

A complete solution to the secrecy problem requires high-assurance multilevel sys-
tems, which impose mandatory controls and are known to be free of covert channels.
Such systems are not currently available in the market, and are at the research and
development stage. In due course of time products should become available. In the
interim, security administrators must be aware of the limitations of discretionary ac-
cess controls for achieving secrecy. Discretionary access controls cannot cope with
Trojan Horse attacks. It is therefore important to ensure that only high quality soft-
ware of known origin is used in the system. (This attitude also supports the integrity
objectives.) Moreover, security administrators must appreciate that even the manda-

27

tory controls of high-assurance multilevel systems do not directly prevent inference
of secret information.

The integrity problem, somewhat paradoxically, is less well understood than se-
crecy but is better supported in existing products. The basic foundation for integrity
is to ensure that all updates are carried out by well-formed transactions. This facility
is reasonably well supported by current products. On the other hand integrity prin-
ciples such as least privilege, separation of duties and delegation of authority are not
so well supported. These are still in the domain of research and development.

The availability problem is very poorly understood, and therefore existing prod-
ucts do not address it to any signi�cant degree.

Glossary

Access control The basic preventive technique for computer security, wherein the
system examines every action and checks its conformance with the security
policy before allowing it to occur.

Assurance The guarantee that a security mechanism is correctly implemented and
cannot be subverted.

Auditing Examination of the system history recorded in an audit trail for purpose of
detecting security breaches and/or determining the users responsible for security
breaches.

Authentication The procedure used to establish the identity of a user to the system
(or one system to another).

Availability The objective of preventing improper denial of access to information.
Denial-of-service is a synonym for lack of availability.

Cascading revocation The indirect revocation of a user's privilege due to its revo-
cation from the source from whom this user obtained it.

Consistency constraints Rules which determine whether or not a given database
state is consistent in context of a given application. The relational model pro-
vides for entity and referential integrity constraints, as well as domain and
dependency constraints. In the most general case a consistency constraint is an
arbitrary predicate which all correct states of the database must satisfy.

Covert channels Indirect means of communication in a computer system which can
be used to subvert the system's security policy.

Data-dependent access controls The authorization to access data is a function
of the value of the data being accessed.

28

Discretionary access controls The granting of access is entirely under control of
the users.

Inference The ability of users to deduce further information based on information
obtained from the database, possibly combined with prior knowledge obtained
by users from outside the database system. An inference presents a breach of
secrecy if more highly classi�ed information can be inferred from less classi�ed
information.

Integrity The objective of preventing improper modi�cation of information or pro-
cesses.

Least privilege principle Programs and users should be given the least privilege
necessary to accomplish their task.

Mandatory access controls The granting of access is constrained by the system
security policy. The following mandatory controls are required by the higher
evaluation classes of the Orange Book: (i) Simple Security|a subject (i.e., a
running program) with label X can read an object (i.e., a data item) with label
Y only if X dominates Y, and (ii) Star-Property|a subject with label X can
write an object with label Y only if Y dominates X.

Orange Book The popular name for the U.S. Department of Defense Trusted Com-
puter System Evaluation Criteria, 1985. This document established a metric
against which computers systems can be evaluated for security. The metric
consists of a number of levels, A1, B3, B2, B1, C2, C1, and D; listed here in
decreasing order of how secure the system is.

Reality Checks Cross-checks with external reality are an essential part of integrity
control.

Secrecy The objective of preventing improper disclosure of information. Con�den-
tiality and non-disclosure are synonyms for secrecy.

Security labels Security labels in the military and government sectors consist of two
components: a hierarchical component and a (possibly empty) set of categories.
A label on an object (e.g., a �le) is called a security classi�cation, while a label
on a subject (e.g., a user) is called a security clearance. The label X is said to
dominate label Y provided the hierarchical component of X is greater than or
equal to the hierarchical component of Y, and the categories of X contain all
the categories of Y. Labels X and Y are incomparable if neither one dominates
the other.

Separation of duties principle A chain of events which a�ects the balance of as-
sets must require di�erent individuals to be involved at key points, so that
without their collusion the overall chain cannot take e�ect.

29

Trojan horse Software which, in addition to the normal functions expected by its
user, also engages in surreptitious actions to subvert security.

View A virtual relation which is derived from base relations and other views.

Well-formed transaction A sequence of primitive actions which if run by itself in
isolation and given a consistent state to begin with will leave the database in a
consistent state.

Readings

Basic material on database systems can be found in the following books (among
others).

� C.J. Date. An Introduction to Database Systems, Volume I. Fifth edition,
Addison-Wesley, 1990.

� H.F. Korth and A. Silberschatz. Database System Concepts. Second edition,
McGraw-Hill, 1991.

These books devote roughly a chapter to security. However, their view of security
is limited to include only the discretionary access controls. Discussion of the SQL
standard is available in the following book.

� C.J. Date. A Guide to the SQL Standard. Second edition, Addison-Wesley,
1989.

The following are some recent books on security.

� M. Gasser. Building a Secure Computer System. Van Nostrand Reinhold, 1988.

� C. Peeger. Security in Computing. Prentice-Hall, 1989.

These cover multilevel security but the coverage of database security issues is limited.

One complimentary copy of each document in the U.S. Department of Defense
\Rainbow Series," which includes the Orange Book (Trusted Computer System Eval-

uation Criteria) and the TDI (Trusted Database Interpretation of the Trusted Com-

puter System Evaluation Criteria), is available from:

INFOSEC Awareness Division
Attn: IAOC
Ft. George G. Meade, MD 20755-6000
USA
Telephone: +1 410-766-8729

30

Appendix: Relational Databases and SQL

This appendix gives a brief review of essential concepts of relational databases and
SQL.

Relational Databases

A relational database stores data in relations which have well de�ned mathematical
properties. Each relation R has two parts as follows.

1. A state-invariant relation scheme R(A1; A2; : : : ; An), where each Ai is an at-

tribute over some domain Di which is a set of values.

2. A state-dependent relation instance R, which is a set of distinct tuples of the
form (a1; a2; : : : ; an) where each element ai is a value in domain Di, or ai is
NULL (i.e., unde�ned).

Roughly speaking, a relation can be thought of as a table, and is often shown as
such. The attributes correspond to columns, and tuples correspond to rows. The
relation scheme gives us the names of the columns and the permissible values (i.e.,
the domain) for each column. The relation instance gives us the rows of the table
at a given instant. For example, the relation scheme for the EMPLOYEE relation of
Table 1 (in section 3) is

EMPLOYEE(NAME, DEPT, SALARY, MANAGER)

with the domain of NAME, DEPT and MANAGER as character strings, and the do-
main of SALARY as integers. Table 1 show a particular instance of the EMPLOYEE
relation, reecting the employees who are currently employed.

It should be noted that in a relation there is no signi�cance to the order of the
columns or rows. Also a relation does not allow duplicate rows (i.e., two rows which
have identical values for all columns).

Let X and Y denote sets of one or more of the attributes Ai in a relation scheme.
We say Y is functionally dependent on X, written X ! Y , if and only if it is not
possible to have two tuples with the same values for X but di�erent values for Y . A
candidate key of a relation is a minimal set of attributes on which all other attributes
are functionally dependent. Intuitively, it is not allowed to have two tuples with the
same values of the candidate key in a relation instance. A candidate key is required
to be minimal, in the sense that no attribute can be discarded without destroying this
property. It is guaranteed that a candidate key always exists, since in the absence
of any functional dependencies it consists of the entire set of attributes. In general,

31

there can be more than one candidate key for a relation with a given collection of
functional dependencies.

In the EMPLOYEE relation of Table 1 it would appear that NAME is the only
candidate key. This, of course, assumes there are no duplicate names. (Realistically
one would use something like the social security number or employee identity number
as the key.) For sake of example, further assume that duplicate salaries are not allowed
in this company. In that case SALARY would also be a candidate key. Note that
the relation instance of Table 1 actually satis�es this requirement. The identi�cation
of the candidate key is, however, a property of the relation scheme and would apply
to every instance; not merely to the particular one that happens to exist at a given
moment.

The primary key of a relation is one of its candidate keys which has been speci�-
cally designated as such. The primary key serves the purpose of uniquely identifying a
speci�c tuple from a relation instance. It also serves the purpose of linking relations
together. The relational model incorporates two application independent integrity
rules, called entity integrity and referential integrity, respectively to ensure these pur-
poses are properly served.

Entity integrity simply requires that no tuple in a relation instance can have
NULL (i.e., unde�ned) values for any of the primary key attributes. This property
guarantees that each tuple will be uniquely identi�able.

Referential integrity is concerned with references from one relation to another.
To understand this property in context of Table 1 let us suppose there is a second
relation with the scheme

DEPARTMENT(DEPT, LOCATION, BUDGET)

with primary key DEPT. The DEPT attribute of the EMPLOYEE relation is said
to be a foreign key. In general a foreign key is an attribute (or set of attributes)
in one relation R1 whose values are required to match those of the primary key of
a tuple in some other relation R2. R1 and R2 need not be distinct. In fact, since
managers are employees, the MANAGER attribute in EMPLOYEE is a foreign key
with R1 = R2 = EMPLOYEE.

Referential integrity stipulates that if a foreign key FK of relation R1 is the
primary key PK of R2, then for every tuple in R1 the value of FK must either be
NULL or equal to the value of PK of a tuple in R2. In context of Table 1, and the
above discussion, referential integrity requires the following.

� Due to the DEPT foreign key, there should be tuples for the Toy, Admin, and
Candy departments in the DEPARTMENT relation.

� Due to the MANAGER foreign key, there should be tuples for Jones, Baker and
Harding in the EMPLOYEE relation.

32

The motivation of referential integrity is to prevent employees from being assigned to
departments or managers who do not exist in the database. Note that it is all right
for employee Harding to have a NULL manager. It would similarly be acceptable for
an employee to have a NULL department.

SQL

Every DBMS needs a language for de�ning, storing, retrieving, and manipulating
data. SQL is the de facto standard, for this purpose, in relational DBMSs. SQL
emerged from several projects at the IBM San Jose (now called Almaden) Research
Center in the mid-1970s. The name SQL was originally an abbreviation for Structured
Query Language. Most relational DBMSs today support some dialect of SQL. There
is also an o�cial standard approved by the American National Standards Institute
(ANSI) in 1986, and accepted by the International Standards Organization (ISO) in
1987. Our objective here is to explain SQL in just enough detail to understand the
examples in this chapter.

Consider the EMPLOYEE relation of Table 1 (in section 3). The relation scheme
is de�ned in SQL by the following command.

CREATE TABLE EMPLOYEE
(NAME CHARACTER NOT NULL,

DEPT CHARACTER,
SALARY INTEGER,
MANAGER CHARACTER,
PRIMARY KEY (NAME),
FOREIGN KEY (DEPT) REFERENCES DEPARTMENT,
FOREIGN KEY (MANAGER) REFERENCES EMPLOYEE)

This statement creates a table called EMPLOYEE with four columns. The NAME,
DEPT and MANAGER columns have character strings (of unspeci�ed length) as
values, whereas the SALARY column has integer values. NAME is the primary key.
DEPT is a foreign key which reference the primary key of table DEPARTMENT.
MANAGER is a foreign key which references the primary key (i.e., NAME) of the
EMPLOYEE table itself.

The EMPLOYEE table is initially empty. Tuples are inserted into it by means of
the SQL INSERT statement. For example, the last tuple of table 1 is inserted by the
following statement.

INSERT
INTO EMPLOYEE(NAME, DEPT, SALARY, MANAGER)
VALUES VALUES(`Harding', `Admin', 50000, NULL)

33

The remaining tuples can be similarly inserted. Insertion of the tuples for Baker,
Jones and Smith must occur in this order, so as to maintain referential integrity.
(Alternately, these tuples can be inserted in any order with NULL managers which
are later updated to their actual values.) There is a DELETE statement to delete
tuples from a relation.

Retrieval of data is e�ected in SQL by the SELECT statement. For example,
the NAME, SALARY and MANAGER data for employees in the Toy department is
extracted as follows.

SELECT NAME, SALARY, MANAGER
FROM EMPLOYEE
WHERE DEPT = `Toy'

This query applied to Table 1 returns the data shown in Table 2.

The WHERE clause in a SELECT statement is optional. SQL also allows the
retrieved records to be grouped together for statistical computations by means of
built-in statistical functions. For example, the following query gives the average
salary for employees in each department.

SELECT DEPT, AVG(SALARY)
FROM EMPLOYEE
GROUP BY DEPT

Data from two or more relations can be retrieved and linked together in a SELECT
statement. For example, the location of employees can be retrieved by linking the
data in EMPLOYEE with that in DEPARTMENT, as follows.

SELECT NAME, LOCATION
FROM EMPLOYEE, DEPARTMENT
WHERE EMPLOYEE.DEPT = DEPARTMENT.DEPT

This query will attempt to match every tuple in EMPLOYEE with every tuple in
DEPARTMENT, but will select only those pairs for which the DEPT attribute in
the EMPLOYEE tuple matches the DEPT attribute in the DEPARTMENT tuple.
(Since DEPT is a common attribute to both relations, every use of it is explicitly
identi�ed as occurring with respect to one of the two relations.)

Finally the UPDATE statement allows one or more attributes of existing tuples
in a relation to be modi�ed. For example, the following statement gives all employees
in the Toy department a raise of $1000.

UPDATE EMPLOYEE
SET SALARY = SALARY + 1000
WHERE DEPT = `Toy'

34

This statement selects those tuples in EMPLOYEE which have the value of Toy for
the DEPT attribute. It then increases the value of the SALARY attribute for all
these tuples by $1000 each.

35

Contents

1 Introduction 1

2 Basic Security Concepts 2

2.1 Secrecy, Integrity and Availability . 2

2.2 Security Policy . 3

2.3 Prevention, Detection and Tolerance 3

2.4 Assurance . 4

3 Access Controls in Current Systems 4

3.1 Granularity and Modes of Access Control 4

3.2 Data Dependent Access Control . 5

3.2.1 View Based Access Control 5

3.2.2 Query Modi�cation . 7

3.3 Granting and Revocation of Access 8

4 Multilevel Security Requirements 10

4.1 Limitations of Discretionary Access Controls 10

4.2 Mandatory Access Controls . 11

4.3 Covert Channels . 13

4.4 Evaluation Criteria . 13

5 Inference and Aggregation 14

5.1 Appropriate Labeling . 15

5.2 Query Restriction . 15

5.3 Polyinstantiation . 16

5.4 Auditing . 17

5.5 Tolerating Limited Inferences . 17

6 Integrity Principles and Mechanisms 18

6.1 The Insider Threat . 18

6.2 Integrity Principles . 19

6.3 Integrity Mechanisms . 20

6.3.1 Well-formed Transactions . 20

6.3.2 Least Privilege . 21

6.3.3 Separation of Duties . 23

36

6.3.4 Reconstruction of Events . 24

6.3.5 Delegation of Authority . 24

6.3.6 Reality Checks . 25

6.3.7 Continuity of Operation . 25

6.4 Conclusion . 25

7 Examples 25

7.1 DB2 . 26

7.2 ORACLE . 26

7.3 dBase IV . 27

8 Summary 27

37

